

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

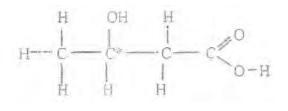
PMT

GCE CHEMISTRY – CH4

SUMMER 2014 MARK SCHEME

SECTION A

Q.1	(a)	(i)	$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} + Cl_{2} \rightarrow CH_{3}CH_{2}CH_{$	[1]
		(ii)	CH ₃ CH ₂ CH ₂ CHCH ₃	[1]
	(b)	(Anh	ydrous) aluminium chloride / iron(III) chloride allow AlCl ₃ / FeCl ₃	[1]
	(c)	(i)	orange / red precipitate	[1]
		(ii)	$(1) -COCH_3 \text{ groups in any position}$	
	It must contain a C=O group but it is not an aldehyde as it does not react w Tollens' reagent (1)			th [2]


(d)	(i)	(Alkaline) potassium manganate(VII) (solution) allow $KMnO_4 / M_2$		[1]		
	(ii)	Dilute acid allow HCl / H^+		[1]		
	(iii)	Lithium tetrahydridoaluminate(III) / lithium aluminium hydride allow LiAlH ₄				
	(iv)	CH ₂ Br				

(e) Only the infrared spectrum of benzoic acid would have a peak at $1650-1750 \text{ cm}^{-1}(1)$ This is due to the carbonyl group present in the benzoic acid (1) [2]

Total [12]

[1]

Q.2 (a)

[1]

(b)	(i)	Acidified potassium dichromate allow H^+ , $Cr_2O_7^{2-}$	[1]			
	(ii)	I An equimolar mixture of two enantiomers / optical isomers do not accept 'equal mixture'	[1]			
		II It has no (apparent) effect on the plane of polarised light	[1]			
(c)) (i) But-2-enoic acid; this is because each of the carbon atoms of the double b has two different groups / atoms allow reason based on the other isomer					
	(ii)	Any TWO from the following for (1) each reagent used / temperature / quantities / time of reaction / catalyst / solvent [[2]			
(d)	Reage Obser		[2]			
(e)	The NMR spectrum will consist of two peaks, as there are two discrete 'areas' of protons; these will be seen at between 2.0 to 2.5 (CH ₃) and between 2.5 to 3.0 (CH ₂) (1) The peak area ratio will be 3:2 for the CH ₃ and CH ₂ protons respectively (1) There will be no splitting of either signal as the protons causing these signals are not bonded directly to other carbon atoms that also have protons (1)					
	1 max if only one peak described correctly [3					
	QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning.					
		Total [1	131			

PMT

PMT

Q.3 (a) (i) 2 mol of ethanol gives 1 mol of ethoxyethane (1)

Moles of ethanol = $\frac{69}{46}$ = 1.5

- \therefore Moles of ethoxyethane if theoretical yield = 0.75
- \therefore Moles of ethoxyethane if 45% yield = $0.75 \times 0.45 = 0.34$ (1)

Mass of ethoxyethane = $0.34 \times 74 = 25g$ (1) allow error carried forward [3]

(ii) Ethene /
$$C_2H_4$$
 [1]

(iii)
$$H = H$$

 $H = C = C = Br$
 $H = H = C = C = Br$
 $H = H = C = C = Br$
(1) for correct curly arrows (1) for correct δ^+ and δ^- [2]
(iv) They need to have an N-H / O-H / F-H bond / a highly electronegative atom
bonded to hydrogen [1]
(i) For example
 $CH_{3O} = Br$
 $HO = Br$
 Br [1]
Accept any polybrominated species
Do not accept a monobrominated species
(ii) Bromine decolorised / orange to colourless / white solid [1]

(c) Iron(III) chloride solution / $FeCl_3$ (1) Reagent

> Observation Purple coloration / solution (1) [2]

(d) (i)
$$C_{10}H_{12}O_1$$
 [1]

(ii)
$$\begin{array}{c} H & H \\ i & I \\ CH_3 - C - C - C \\ I & I \\ H & Br \end{array} \xrightarrow{OH} OH \qquad CH_3 - C - C - C - OH \\ I & I \\ Br & H \end{array}$$
[1]

(b)

(e) Displayed formula, for example

 $CH_2 - CH_2 - CH_3$ (1) HOOC

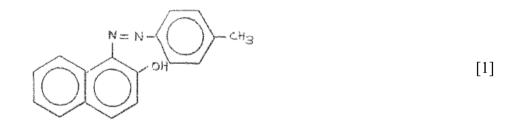
Functional group

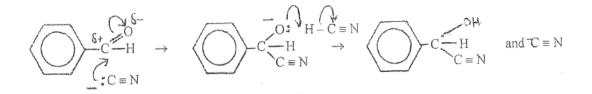
carboxylic acid (1)

[2]

Total [15]

PMT


SECTION B


Q.4 (a) (i) (Fractional) distillation / (preparative) gas chromatography / HPLC / TLC column chromatography / solvent extraction [1] the fragmentation pattern would be different / valid examples given [1] (ii) (iii) Ι Η CH₂-N-C + HCl CH₂NH₂ + CH₃C [1] II Heated electrically / by a naked flame with a water bath (1) Add compound \mathbf{G} to the ethanol until the hot ethanol will (just) not dissolve any more solute (1) Filter hot (1) Allow to cool (1)Filter (1) Dry in air / window sill / < 60 °C in an oven (1) [5] Maximum 4 out of 5 total if second marking point not given Note 5 marks maximum here QWC Information organised clearly and coherently, using specialist

vocabulary where appropriate [1]

(iv) I The amine is reacted with sodium nitrite / HCl(aq) or nitrous acid (1) at a temperature of $< 10 \,^{\circ}$ C (1) [2]

Π

Accept a mechanism that shows HCN polarisation and nucleophilic addition as a concerted process

polarisation / charges shown (1) curly arrows on first structure (1) regeneration of $^{-}C \equiv N$ or capture of H⁺ and curly arrow (1) [4]

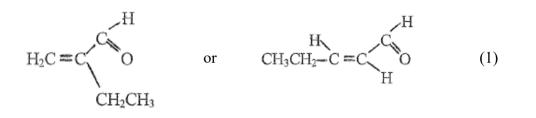
(ii) Chromophores (1)The colour will be black (1) as the compound absorbs blue / other colours (1)

[3]

Total [20]

Q.5 (a) C 71.3 H 9.6 \therefore O 19.1 (1) \div by A_r $\frac{71.3}{12} = 5.94$ $\frac{9.6}{1.0} = 9.6$ $\frac{19.1}{16} = 1.193$

÷ smallest
$$5.94 = 5$$
 $9.6 = 8$ $1.193 = 1$ (1)
1.193 1.193


Only one oxygen atom per molecule

 \therefore Molecular formula is C₅H₈O (1)

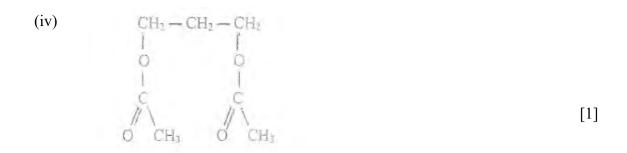
Silver mirror produced $\therefore -C_0^H$ present (1)

Ion m/z 29 suggests ethyl group present / CH_3CH_2 (1)

Structure must be

[6]

[3]


(b) (i)
$$C_{11}H_{24} \longrightarrow C_6H_{14} + C_2H_4 + C_3H_6$$
 [1]

(ii) Total peak areas
$$26 + 13 + 46 = 85$$

% propene =
$$\frac{13 \times 100}{85}$$
 = 15.(3) [1]

(iii) Any THREE points for (1) each

e.g. can it run at a lower temperature (reducing energy costs) is the yield comparable / better than the yield from the propene process is the time taken comparable / better than used in the propene process is there a continued availability of starting materials can the product be easily / better separated from the reaction mixture is relatively more expensive equipment needed is it a batch or continuous process

(c)

(i)

$$-\overset{\circ}{\mathbb{C}} \longrightarrow \overset{\circ}{\mathbb{C}} \left[\overset{\circ}{\mathbb{C}} - (CH_2)_3 - O - C - \overset{\circ}{\mathbb{C}} \right] \xrightarrow{\circ}{\mathbb{C}} 0 - (CH_2)_3 - O -$$
[1]

(ii) The production of PTT is an example of condensation polymerisation (1)
 The production of poly(propene) is an example of addition polymerisation (1)
 Condensation polymerisation needs bifunctional compounds / COOH,OH etc (1)

Addition polymerisation needs a $\supset C = C \subset C$ present in the monome	r	(1)
Addition polymerisation has an atom economy of 100% Condensation polymerisation has an atom economy of $< 100\%$	(1)	
(as a co-product is formed)	(1)	[6]

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

Total [20]

PMT